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Abstract. The “power of choice” has been shown to radically alter the behavior of a number of randomized
algorithms. Here we explore the effects of choice on models of random tree growth. In our models each
new node has k randomly chosen contacts, where k > 1 is a constant. It then attaches to whichever one of
these contacts is most desirable in some sense, such as its distance from the root or its degree. Even when
the new node has just two choices, i.e., when k = 2, the resulting tree can be very different from a random
graph or tree. For instance, if the new node attaches to the contact which is closest to the root of the tree,
the distribution of depths changes from Poisson to a traveling wave solution. If the new node attaches to
the contact with the smallest degree, the degree distribution is closer to uniform than in a random graph,
so that with high probability there are no nodes in the tree with degree greater than O(log log N). Finally,
if the new node attaches to the contact with the largest degree, we find that the degree distribution is a
power law with exponent −1 up to degrees roughly equal to k, with an exponential cutoff beyond that;
thus, in this case, we need k � 1 to see a power law over a wide range of degrees.

PACS. 89.75.Hc Networks and genealogical trees – 02.50.Ey Stochastic processes – 05.40.-a Fluctuation
phenomena, random processes, noise, and Brownian motion

1 Formulation of the model

Over the past decade, the “power of choice” has emerged
as a theme in research on optimization and randomized al-
gorithms [1–4]. Consider a random decision process. Typ-
ically at each step of the process a decision is reached
by choosing one outcome at random and accepting this
choice. Now, rather then one random alternative being
presented at each decision point, let a small set of ran-
domly generated alternatives be presented, and let the
best one be selected. It has been shown that with as few
as two alternatives at each decision point, the resulting
properties of the process can be radically altered. This was
first explored in the context of load-balancing the alloca-
tion of jobs arriving at random times to a batch of pro-
cessors. With as few as two choices, the maximum load
on any one processor drops dramatically from O(log N)
to O(log log N). Increasing the number of choices beyond
two only improves this by a constant factor, illustrating
the “power of two choices”.

Here we explore the effect of choice on growth of ran-
dom trees. Perhaps the simplest way to build a growing
random tree is to attach each new node to an existing
node which is chosen uniformly at random. This process
generates random recursive trees which have been studied
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in great detail (see e.g. [5–8] and references therein). Here
we discuss a simple generalization: for each new node we
choose k > 1 existing ‘contact’ nodes uniformly at ran-
dom, select the ‘best’ one according to some definition,
and connect the new node to it. This creates a random
tree [9] whose statistics may be very different from those
of a random recursive tree.

We have to define, of course, the ‘quality’ of the node
so that we can choose the best one. One natural definition
of quality in a tree is distance to the root — the closer
to the root, the better, so that the new node attaches to
whichever one of its contacts is closest to the root (and,
if more than one contact has this smallest distance, we
choose one of them randomly). This could correspond, for
instance, to someone joining a hierarchical organization,
and choosing to become a daughter node of whichever one
of their k contacts is highest up in the hierarchy.

Another natural definition is to measure quality by de-
gree of the contact node: for instance, to attach the new
node to the contact node with highest (or lowest) degree,
again breaking ties randomly. Note that this is very differ-
ent from the preferential attachment process [10], where
the contact is selected from the entire graph with probabil-
ity proportional to its degree. This latter process requires
complete knowledge of the degree of all existing nodes.
In contrast, our model assumes that the new node pos-
sesses only a small amount of local information, namely,
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the degrees of a small number of potential contacts. This
brings us to another motivation for this work: the desire
to understand the effects of limited, local information on
network growth.

For the smallest-depth model, we find a marked differ-
ence in behavior for k ≥ 2 versus k = 1. The measure of
interest in this case is the depth distribution (the fraction
of nodes at each depth j). For k = 1, i.e., a random recur-
sive tree, this distribution is Poisson. For k ≥ 2, the same
Poisson distribution is observed for distances close to the
root, however for larger distances the depth distribution
obeys a traveling wave solution. We also consider using
maximal depth, rather than minimal depth, as the contact
node selection criterion and find a similar traveling-wave
solution.

For the highest-degree model, we find that the degree
distribution decays exponentially for degree i > k. For
i < k the degree distribution exhibits power-law like be-
havior, thus in order to observe a power law for any sub-
stantial regime requires k � 1. In other words, a large
amount of (overhead/knowledge of the system) is required
to achieve a power law distribution.

Finally, in analogy to the above-referenced works on
load balancing, the lowest-degree model achieves a degree
distribution which is very close to uniform, in which the
maximum degree in the entire graph is O(log log N) as
opposed to the maximum degree in a Poisson distribution,
which is roughly O(log N). Thus, it is possible to generate
a nearly-regular random tree (i.e., all vertices have nearly
the same degree) without global coordination.

2 Smallest depth

Let N be the total number of nodes and Dj(N) be the
number of nodes at distance j from the root. By defini-
tion, D0(N) ≡ 1, since the root is distance 0 from itself.
Thus D0(N) is a deterministic quantity, while Dj(N) with
1 ≤ j < N are random variables. We shall focus on their
averages Qj(N) ≡ 〈Dj(N)〉. An average value provides a
good description of a random variable when it is large and
hence fluctuations are relatively small; we will see that this
is indeed correct for D1(N).

To set the stage we begin in Section 2.1 with the sim-
pler case of random recursive trees, for which everything
is already known (see e.g. [11]). We then consider the in-
fluence of 2 or more choices in Section 2.2.

2.1 Random recursive trees and depth

The quantity Dj grows each time a node at distance j −1
is selected as the contact node. The average depth distri-
bution thus satisfies the master equation [12]

Qj(N + 1) = Qj(N) +
1
N

Qj−1(N). (1)

This equation is exact and it applies even for j = 0 if we
set Q−1(N) ≡ 0. Using the recursive nature of (1), we first

solve for Q1(N), then Q2(N), etc. This gives

Qj(N + 1) =
∑

1≤m1<···<mj≤N

1
m1 × . . . × mj

. (2)

Equivalently, we can recast the j-fold sums into simple
sums, although the results look less neat. For example,

Q1(N) = HN−1 (3a)

Q2(N) =
1
2

[
(HN−1)2 − H

(2)
N−1

]
(3b)

where H
(p)
N =

∑
1≤n≤N n−p are harmonic numbers. The

asymptotic behaviors of HN ≡ H
(1)
N , H

(2)
N , and other

harmonic numbers are well-known [13], and the resulting
asymptotics of the depth distribution are

Q1(N + 1) = ln N + γ +
1

2N
− 1

12N2
+ . . .

Q2(N + 1) =
1
2

(ln N)2 + γ ln N +
1
2

[
γ2 − π2

6

]
+ . . . ,

where γ ≈ 0.577 is the Euler-Mascheroni constant. Anal-
ogous results hold for Qj(N) for larger j.

If we merely want to establish the leading asymptotic
behavior, we can replace the summation in (2) by integra-
tion. This leads to the simple result

Qj(N) → (ln N)j

j!
(4)

showing that in the limit N → ∞, the depth distribu-
tion is Poisson with mean lnN . Alternatively, we can de-
rive (4) within a continuum approach by replacing finite
differences by derivatives in the N → ∞ limit of (1). This
procedure recasts discrete master equations into differen-
tial equations

dQj

dN
=

1
N

Qj−1. (5)

Solving (5) one recovers (4).
The normalization requirement

∑
j≥0 Dj(N) = N im-

plies the sum rule for the averages
∑

j≥0

Qj(N) = N. (6)

The continuum approximation (4) agrees with the sum
rule (2) implying that it well approximates the depth dis-
tribution in the entire range. We therefore use it to find
the depth of the recursive random tree. The depth is de-
fined as the maximal jmax. The criterion Qjmax = 1 leads
to an estimate [11]

jmax = e lnN. (7)

It is possible to derive this result within the exact (dis-
crete) approach and to determine the fluctuations of jmax.
However, for our purposes (7) is sufficient.
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2.2 The model with k = 2 choices

Now suppose the new node has k = 2 choices. In this case,
we have Dj(N + 1) = Dj(N) + 1 if the two contact nodes
have minimum depth j−1, or equivalently, if both of them
have depth at least j − 1, but if they do not both have
depth greater than j − 1. The probability of this is

N−2

⎡

⎢⎣

⎛

⎝
∑

i≥j−1

Di

⎞

⎠
2

−
⎛

⎝
∑

i≥j

Di

⎞

⎠
2
⎤

⎥⎦ =

N−2

⎛

⎝D2
j−1 + 2Dj−1

∑

i≥j

Di

⎞

⎠. (8)

This leads to the exact recurrence

Qj(N + 1) = Qj(N) + N−2

〈
D2

j−1 + 2Dj−1

∑

i≥j

Di.

〉
.

Unfortunately, this is not very helpful since the average of
the product of random quantities differs from the product
of their averages, viz. 〈DiDj〉 
= 〈Di〉〈Dj〉. One can, of
course, write down an exact recurrence for 〈DiDj〉, but
this involves third order moments 〈DiDjDk〉, and so on.
Thus the hierarchical nature of the governing equations
does not allow us to obtain complete and rigorous results
as is possible for the case k = 1.

The cases of j = 1, 2 are exceptional and one can de-
termine Q1 and Q2 analytically. For j = 1 the analysis is
especially simple since D0 = 1,

∑
i≥1 Di = N − 1, and the

growth rate (8) simplifies to [1+ 2(N − 1)]/N2. Therefore
the average number of the neighbors of the root grows
according to an exact and closed recurrence

Q1(N + 1) = Q1(N) +
2N − 1

N2
. (9)

Solving (9) subject to Q1(1) = 0 yields

Q1(N) =
N−1∑

n=1

2n − 1
n2

= 2HN−1 − H
(2)
N−1. (10)

Similarly for j = 2 we use relation
∑

i≥2 Di = N − 1−D1

and obtain

Q2(N + 1) = Q2(N) + 2
N − 1
N2

Q1(N) − 〈D2
1(N)〉
N2

. (11)

To obtain a closed recurrence for Q2 we need to deter-
mine 〈D2

1(N)〉, the average of the square of the number of
neighbors of the root. Then (8) leads to

D1(N + 1) =

{
D1(N) + 1 prob N−2(2N − 1)
D1(N) prob 1 − N−2(2N − 1).

Squaring this equation and averaging we obtain

〈D2
1(N + 1)〉 =

(
1 − 2N − 1

N2

)
〈D2

1(N)〉

+
2N − 1

N2
[〈D2

1(N)〉 + 2Q1(N) + 1]

= 〈D2
1(N)〉 + 2

2N − 1
N2

Q1(N) +
2N − 1

N2
.

Rather than directly solving this recurrence, we can use it
together with (9) to establish a simpler recurrence for the
variance V1(N) = 〈D2

1(N)〉 − 〈D1(N)〉2. We find

V1(N + 1) = V1(N) +
2N − 1

N2
−
(

2N − 1
N2

)2

(12)

which is readily solved to give

V1(N + 1) = 2HN − 5H
(2)
N + 4H

(3)
N − H

(4)
N .

Thus 〈D2
1〉 
= 〈D1〉2, yet the variance is asymptotically

2 lnN and therefore fluctuations of the random variable
D1 are indeed small compared to its average which grows
as 2 ln N , see (10).

We determined 〈D2
1(N)〉 = V1(N)+ Q2

1(N) and there-
fore Q2 satisfies a closed solvable recurrence (11). The
solution reads

Q2(N) =
1
2

[Q1(N)]2 − 1
2

N−1∑

n=1

(
2n − 1

n2

)2

−
N−1∑

n=1

V1(n) + [Q1(n)]2 + Q1(n)
n2

.

For j ≥ 3, the problem becomes genuinely hierarchical
and intractable. If we are seeking only the leading be-
havior, however, we can proceed. When N � 1 and j is
sufficiently small, namely such that

∑
i≤j Qi � N , we can

replace the sum
∑

i≥j Di by N and the growth rate (8) by
2Dj−1/N . Thus we arrive at a set of differential equations

dQj

dN
= 2

Qj−1

N
. (13)

Solving these equations we obtain

Qj(N) =
(2 ln N)j

j!
. (14)

We check the validity of this approximation by substi-
tuting it back into our assumption

∑
i≤j Qi � N which

we used in the derivation of (13). This suggests that (14)
holds when j < v ln N (i.e., for small distances from the
root) where v is the smallest positive root of

v ln
(

2e

v

)
= 1. (15)

We can write v in terms of Lambert’s function W (x), de-
fined as the root of WeW = x:

v = −1/W−1(−1/2e) (16)
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where W−1 denotes the −1st branch of the Lambert func-
tion. Numerically, v = 0.373365...

When j ≥ v ln N we cannot use (14). However, as long
as Qj is much larger than 1, let us assume that the fluctua-
tions in Dj are small. In that case we can replace averages
〈DjDk〉 by QjQk, and in this regime we obtain

dQj

dN
= N−2

⎛

⎝Q2
j−1 + 2Qj−1

∑

k≥j

Qk

⎞

⎠. (17)

It is convenient to introduce the cumulative variable

qj =
1
N

∑

i≥j

Qi (18)

that is, the average fraction of nodes whose depth is at
least j. Summing (17) over all i ≥ j we arrive at a neat
recurrence

d

dN
Nqj = q2

j−1. (19)

The form of this equation suggests the introduction of a
new ‘time’ variable

t = lnN. (20)

This transformation recasts (19) into

dqj

dt
= −qj + q2

j−1 (21)

which should be solved subject to the step function initial
condition: qj(0) = 1 for j ≤ 0 and qj(0) = 0 for j > 0.

Equation (21) has appeared in various contexts (see
e.g. [14]) and while it is unsolvable, an asymptotic behav-
ior of its solution is understood. In the long time limit,
the solution approaches a ‘traveling wave’ form,

qj(t) → q(j − vt). (22)

Plugging (22) into (21) one finds that q(x) satisfies

v
dq

dx
= q(x) − q(x − 1)2. (23)

The boundary conditions are

q(−∞) = 1, q(+∞) = 0. (24)

The boundary-value problem (23)–(24) is still intractable
analytically. However, the velocity v can be determined
even without a complete solution for q(x). The method
relies on the analysis of the tail region x → −∞. One
notices that (23) admits an exponential solution in this
region,

1 − q(x) ∝ eλx as x → −∞. (25)

Plugging this into (23) shows that the velocity v is related
to λ via the dispersion relation [14]

v =
1 − 2e−λ

λ
. (26)

The maximum of v = v(λ) is given by (15) and it occurs at
the largest positive root λ of the transcendental equation
2(1 + λ) = eλ. This is

λ = −1 − W−1(−1/2e) (27)

or numerically, λ = 1.67835... Comparing with (16), we
see that λ and v are related as follows,

λ = −1 + 1/v. (28)

Strictly speaking, one can only assert that velocity does
not exceed the maximum of (26). However, the so-called
selection principle tells us that this extremal value is re-
alized for any initial conditions which vanish sufficiently
rapidly at infinity. The selection principle has been rig-
orously proven for a few nonlinear parabolic partial dif-
ferential equations. Yet heuristic arguments and numeri-
cal evidence indicate that the its range of applicability is
much broader. This is reviewed in [15] in the context of
partial differential equations and in [16] in the context of
difference equations.

Thus there is a sharp front at depth jfront ≈ vt =
v ln N to leading order, where the depth of most nodes in
the tree is concentrated. Furthermore, the width of this
front remains finite even in the limit N → ∞. It is also
possible to compute the sub-leading correction to the po-
sition of the front [14], giving an improved estimate of its
location:

jfront ≈ v ln N +
3
2λ

ln lnN. (29)

To estimate the maximum depth jmax, it is necessary to
bound the tail of q(x) in the positive direction x → +∞.
To do this, note that by definition q(x) is monotonically
decreasing, and by (23) this implies that

q(x) ≤ q(x − 1)2

and therefore that this tail is doubly exponential,

q(x) ∝ e−A·2x

(30)

for some constant A > 0. Setting q(x) = 1/N then gives
the estimate

jmax ≈ jfront +
ln lnN

ln 2
(31)

minus a constant C = ln A/ ln 2. As shown in Figure 1,
(29) and (31) are indeed excellent estimates of the average
and maximum depth respectively.

2.3 The effect of choice

At first sight, it seems that having two choices instead of
one does not qualitatively affect the outcome, since the
depth distributions (4) and (14) both seem Poissonian,
and both have typical depth O(log N). This is, however,
an illusion. First of all, the distribution (4) for random re-
cursive trees is indeed Poissonian while (14) is valid only
for j < v ln N . Secondly, while both types of trees have
depth O(log N), choice causes the depth to be much more
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Fig. 1. The average depth (circles) and maximum depth
(crosses) of a tree with k = 2, averaged over 103 independent
trials for each value of N , and (dashed) the expressions (29)
and (31) for jfront and jmax respectively.

concentrated. This is easiest to see if we consider the cu-
mulative depth distribution (18). For random recursive
trees, qj(t) is asymptotically

qj(t) =
1
2

erfc
(

j − t√
2t

)
(32)

where erfc(z) is the error function

erfc(z) =
2√
π

∫ ∞

z

dη e−η2
. (33)

Thus

qj(t) =

{
1 j − t � −√

t

0 j − t � +
√

t.

The boundary layer where q changes from one to zero is
not a true front as its width grows with ‘time’ as

√
t ∼√

ln N .
On the other hand, for the model with choice the cu-

mulative depth distribution has a traveling wave shape
with a front of constant width. Thus

qj(t) =

{
1 j − jfront � −1
0 j − jfront � +1.

2.4 Multiple choices

What if the new node has more than two choices? The
cases with k ≥ 3 (with k constant) are morally similar to
the k = 2 case: the cumulative depth distribution obeys
the differential equation

dqj

dt
= −qj + qk

j−1. (34)

Transforming this to qj(t) = q(j−vt) as before, we obtain

v
dq

dx
= q(x) − q(x − 1)k. (35)

The solution is again a traveling wave, whose velocity v
depends on k. Assuming the selection principle, v is the
smallest positive root of

v ln
(

ke

v

)
= 1 (36)

which can be written in terms of Lambert’s function as

v = −1/W−1(−1/ke). (37)

Asymptotically, as k grows we have

v ≈ 1
ln ke + ln ln ke

=
1

ln k

(
1 − O

(
ln ln k

ln k

))
. (38)

A more precise estimate for jfront is again given by (29),
with λ given by (28). For j � jfront, (4) and (14) general-
ize to

Qj(N) =
(k ln N)j

j!
. (39)

Finally, the tail of q(x) is doubly exponential,

q(x) ≈ e−Akx

(40)

and the maximum depth is given by

jmax ≈ jfront +
ln lnN

ln k
. (41)

3 Largest depth

We pause here to consider a model in which we reverse
our definition of the ‘better’ node, and attach each new
node to the contact node which is furthest from the root.
If k = 2, then we have Dj(N + 1) = Dj(N) + 1 whenever
the maximum depth of the two nodes is j − 1, and this
occurs with probability

N−2

⎡

⎣
(

j−1∑

i=0

Di

)2

−
(

j−2∑

i=0

Di

)2
⎤

⎦ =

N−2

(
D2

j−1 + 2Dj−1

j−2∑

i=0

Di

)
. (42)

For instance, the average number of the neighbors of the
root grows according to

Q1(N + 1) = Q1(N) +
1

N2
(43)

and therefore
Q1(N) = H

(2)
N−1. (44)

Thus the average number of neighbors of the root does
not diverge as in the smallest depth model, but instead
approaches the constant ζ(2) = π2/6. Generally, the be-
havior of Qj(N) for small j is very different from (14),
viz. for j = O(1) the average number of nodes of depth j
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remains finite in the N → ∞ limit. Therefore in contrast
with the smallest depth model, the quantities Dj(∞) are
not self-averaging when j = O(1) and their averages do
not characterize them. Yet, the probability distribution

P (s) = Prob[D1(∞) = s] (45)

can be determined. For instance, D1(2) = 1 and the prob-
ability that the root still has one neighbor when the tree
size reaches N is

Prob[D1(N) = 1] =
N−1∏

n=2

(
1 − 1

n2

)

and therefore

P (1) =
∞∏

n=2

(
1 − 1

n2

)
=

1
2
. (46)

Proceeding with this line of reasoning one obtains

P (s + 1) =
1
2

∞∑

2≤n1<···<ns

1
(n2

1 − 1) × · · · × (n2
s − 1)

which can be expressed as a sum involving the zeta func-
tion at positive integers.

However, even though the Dj are not self-averaging,
there are many similarities between the smallest depth
model and this one. In particular, the cumulative depth
distribution has a traveling wave shape (22). Indeed, af-
ter several mappings [16] the model becomes identical to
one which has appeared in studies of collision processes in
gases [17], fragmentation processes [18], and other prob-
lems [14]. If we define the cumulative variable as

qj =
1
N

∑

i≥j

Qi, (47)

then writing qj(t) = q(j − vt) gives (19), (21) and (23)
again, but now with the boundary conditions

q(−∞) = 0, q(+∞) = 1. (48)

With these boundary conditions, (23) admits a solution
whose tail in the positive direction is exponential,

1 − q(x) ∝ e−µx as x → +∞ (49)

and the dispersion relation is now

v =
2eµ − 1

µ
. (50)

The selection principle now suggests that v is the mini-
mum of (50). This is the larger of the two real roots of
the transcendental equation (15), which is v = 4.31107...
A more precise estimate of jfront is

jfront = v ln N − 3
2µ

ln lnN (51)

where µ = 0.768039... is the larger root of 2(1−µ) = e−µ.
More generally, for k > 2 the velocity v is the larger

real root of (36), or

v = −1/W1(−1/ke) (52)

which, as k grows, approaches

v ≈ ke − 1. (53)

The position of the front is given by (51) with

µ = 1 − 1/v. (54)

Finally, since the tail of q(x) in the positive direction is
given by (49), setting qj = 1 − 1/N gives the following
estimate of the maximum depth,

jmax = jfront +
1
µ

ln N. (55)

Note that, unlike the minimum depth model, jmax − jfront

is O(log N) instead of O(log log N), since the tail (49) is
exponential rather than doubly exponential.

4 Highest degree

We now consider a model in which quality is measured
not by depth, but by the degree of the contact node —
the higher the degree, the better. As we will show below,
in this case the degree distribution exhibits a power law
up to degree j ∼ k, beyond which it decays exponentially.
Therefore, in this model we need a large number of choices,
k � 1, in order to observe a power law over a wide range
of degrees.

4.1 Recurrence for the degree distribution

We start by writing a master equation for the degree dis-
tribution of the tree. We add one node at each step, so
at time t there are t nodes in the tree. Let Ni(t) be the
number of nodes which have degree i at time t, and let
Ci(t) =

∑i
j=1 Nj(t) be the corresponding total number

of nodes of degree i or less at time t. Normalizing these
numbers, let ai(t) = Ni(t)/t be the fraction of nodes which
have degree i, and let ci(t) =

∑i
j=1 aj(t) = Ci(t)/t be the

corresponding cumulative distribution.
At each iteration, we choose k contact nodes at random

from the t existing nodes, and connect the new node to
the contact node of highest degree, with ties broken ran-
domly. The evolution of the expected cumulative degree
distribution can can be written as, for all i ≥ 1,

Ci(t + 1) = Ci(t) + 1 − (ci(t)k − ci−1(t)k
)
, (56)

since Ci increases by 1 for each new node added, and de-
creases precisely when the new node connects to a node of
degree i. This latter event occurs when all k nodes have
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Fig. 2. The degree distribution, ai, for the highest degree
model, for both k = 1 and k = 2. The points are data from
numerical simulation of the model with k = 2.

degree i or less, but not all have degree i−1 or less. Writ-
ing ci(t) = Ci(t)/t and making the assumption that a
steady-state limit exists, we obtain the recurrence

ci = 1 − (ck
i − ck

i−1). (57)

We note that in the case k = 1, where there is no choice,
the solution to (57) is simply

ci = 1 − 2−i and ai = 2−i (58)

which is the degree distribution of a random recursive tree.

4.2 The model with k ≥ 2 choices

We are particularly interested in the behavior for small k.
Recall that the “power of choice” comes from situations
where results vary dramatically if k = 2 rather than k =
1. For k ≥ 2 we can solve (57) analytically only in the
regime i � 1 as discussed in detail below. Yet, for k = 2,
equation (57) is very easy to solve numerically as it reduces
to the quadratic equation:

c2
i + ci − (1 + c2

i−1) = 0. (59)

Figure 2 is a plot of the degree distribution, ai, for k = 1
and k = 2. Recall ai = ci − ci−1. The data points are
from a numerical simulation with k = 2, grown to size
1 × 106 nodes. Note the excellent agreement. Though the
distribution for k = 2 decays less slowly than k = 1 both
exhibit exponential decay, thus the nature of the solution
is not altered with such minor amounts of choice.

From numerical simulation with k ≥ 2 we find different
behaviors for i > k than for i < k (see Fig. 3). For degree
i > k we observe ai ∼ exp(−i/k). For i < k we observe
what appears to be a power law in that regime, ai ∼ k−γ ,
with γ ≈ 1.5. The largest k we simulated was k = 32,
hence the “power law” regime is quite small. Rather than
computer simulation, we can look at the asymptotic limits
of (57) and arrive at these similar results in the limit i � 1
and k � 1. Note, the asymptotic limit will give γ = 1, and
we can attribute the difference with numerical results to
finite size effects in simulation.

Fig. 3. Numerical simulation results for k = 16. Note that
for i < k we observe ai ∼ i−1.5, while for i > k we observe
i ∼ e−i/k.

4.3 Asymptotic limits

In the asymptotic regime i � 1 we write ci = 1 − εi

and assume that εi � 1. To first order, ck
i = 1 − kεi.

Simplifying (57), we find (k + 1)εi = kεi−1 and therefore

1 − ci = Ak

(
k

k + 1

)i

when i � 1, (60)

where Ak is a constant depending on k. We argue below
that

Ak ∼ k−1 as k → ∞ (61)

In the rest of this section we always assume that k � 1.
Let us start with nodes of degree one (which are often
called ‘leaves’). In this case we have c1 = a1 and equa-
tion (57) reduces to

a1 = 1 − ak
1 . (62)

Writing

a1 = 1 − W

k
(63)

and assuming that W � k yields ak
1 = e−W . This allows

us to recast (62) into

WeW = k (64)

so W is Lambert’s function W (k). For large k, we have
W (k) ≈ ln k, justifying our assumption that W � k. Thus
almost all nodes are leaves: the fraction of nodes whose
degree exceeds one is 1 − a1 = W (k)/k ≈ (ln k)/k.

Analyzing (57) for i = 2, 3, . . . one finds that the fol-
lowing ansatz is useful:

ci = 1 − W − wi

k
. (65)

Plugging (65) into (57) we obtain

1 + ewi−1 − ewi = W−1wi (66)
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Since W → ∞ as k → ∞, equation (66) simplifies to

1 + ewi−1 − ewi = 0 (67)

whose solution (satisfying w1 = 0) is wi = ln i. Plugging
this to (65) we find that ai = ci − ci−1 is given by

ai = k−1 ln
(

i

i − 1

)
when 2 ≤ i � k. (68)

The upper bound i � k is necessary since we can use (67)
instead of (66) only when wi � W which is equivalent to
ln i � ln k. Note that we can further simplify (68) when
i � 1, viz.

ai =
1
k
· 1

i
when 1 � i � k. (69)

Thus up to a crossover at i = k, the degree distribution
exhibits an algebraic behavior ai ∼ i−1 with unusually
small exponent.

The derivation of (60) actually holds when i � k.
Using (60) we compute ai = ci − ci−1 to give

ai = k−1Ak

(
k

k + 1

)i

when i � k. (70)

The regions of the validity of (69) and (70) do not formally
overlap. It is reasonable to assume, however, that they re-
main qualitatively correct. Then from equation (69) we
obtain ak ∼ k−2 while equation (70) leads to ak ∼ k−1Ak.
Matching this values we confirm the announced asymp-
totic of the amplitude, equation (61). Furthermore, we
find

ai ∼
(

k

k + 1

)i

≈ e−i/k when 1 � k � i. (71)

5 Lowest degree

There are situations where one wants to ensure that all
nodes have low degree, for instance consider the case of
load-balancing discussed in Section 1. Thus the final vari-
ant we consider is when an incoming node connects to the
target node of lowest degree.

5.1 Recurrence for the degree distribution

As in Section 4, we begin by writing the master equation
for the degree distribution of the tree. Again let Ni(t)
be the number of nodes which have degree i at time t,
and now let Ci(t) =

∑
j≥i Nj(t) be the corresponding

total number of nodes of degree i or greater at time t.
Normalizing, let ai(t) = Ni/t and let ci(t) =

∑
j≥i aj(t) =

Ci(t)/t be the complementary cumulative distribution.
At each iteration, we choose k contact nodes at random

from the t existing nodes, and connect the new node to the
contact node of lowest degree, with ties broken randomly.

The evolution of the expected complementary cumulative
degree distribution can can be written, for all i > 1, as

Ci(t + 1) = Ci(t) +
[
ci−1(t)k − ci(t)k

]
, (72)

since Ci increases precisely when the new node connects
to a node of degree i − 1. This event occurs when all k
nodes have degree i − 1 or greater, but not all have de-
gree i or greater. Writing ci(t) = Ci(t)/t and making the
assumption that a steady-state limit exists, we obtain the
recurrence

ci = ck
i−1 − ck

i . (73)

We note that in the case k = 1, where there is no choice,
the solution to (73) is simply

ci = 2−(i−1) and ai = 2−i (74)

which, as (58), is the degree distribution of a random re-
cursive tree.

5.2 The model with k ≥ 2 choices

For k = 2, (73) is very easy to solve numerically as it
reduces to the quadratic equation:

c2
i + ci − c2

i−1 = 0. (75)

Figure 4 is a plot of the degree distribution, ai, for k = 1
and k = 2. Recall here, ai = ci − ci+1. The data points
are from a numerical simulation with k = 2, grown to size
1 × 106 nodes. Note the excellent agreement. With minor
choice, the degree distribution is radically altered.

For all k ≥ 2 we can show the upper bound on the
maximum degree is O(log log N) using a method similar
to that in [19]. From (73), for i ≥ 3 we obtain the upper
bound, ci ≤ ck

i−1, and by recursion:

ci ≤ ck
i−1 ≤ cK

2 , (76)

where K = k(i−2). Since c2 < 1, ci decreases doubly-
exponentially. To find imax, the typical largest degree
present after addition of N nodes, we set ci = 1/N . Solv-
ing this relation we find:

imax ≤ logk log1/c2
N = O(log log N). (77)

6 Discussion

We explore the “power of choice” in growth of random
trees by introducing a minimalist generalization of ran-
dom recursive trees. At each decision point k > 1 choices
are presented and the most desirable one selected. If the
criteria is to minimize or maximize depth, a small amount
of choice has a dramatic effect. For k = 1 the depth
distribution decays with a Poisson behavior. For k ≥ 2
this Poisson decay is seen for distances close to the root,
but for further distances, the depth distribution obeys a
traveling wave behavior. If the criteria instead involves
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Fig. 4. The degree distribution, ai, for the lowest degree
model, for both k = 1 and k = 2. The points are data from
numerical simulation of the model with k = 2.

node degree, we must distinguish the maximum degree
model from the minimum degree one. For minimum de-
gree, choice has a dramatic effect. Going from k = 1 to
k = 2 the degree distribution changes from geometric
decay to double-exponential decay (and hence the max-
imum degree observed in the tree changes from O(log N)
to O(log log N)). In contrast, for maximum degree, a large
number of choices, k � 1, must be allowed before a change
from the k = 1 behavior is observed. The degree distribu-
tion decays exponentially for all small values of k. Once
k � 1 a power law distribution results for nodes of degree
i < k, while for nodes of degree i > k the distribution
decays exponentially.

We established many results about the depth distri-
bution. Some of them are exact, others (namely the as-
sumption that the maximum allowed value of velocity is
realized, employed at the end of Sect. 2.2) utilize a selec-
tion principle which is not rigorously established for (21).
There is no doubt of the validity of this principle in a broad
range of contexts, and there is firm numerical support of
all analytical results derived herein.

In this current work, our focus is on trees. An inter-
esting avenue for future research is to explore the power
of choice in network growth, by extending our analysis to
situations where each incoming node connects to multiple
parents. One challenge to analytic, and even numerical,
exploration of such a model is that the depth of any older
node can change with the addition of new nodes.
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